Graph theory (350」)

Le1

Definition : A graph is an ordered triple $\left(V(G), E(G), \psi_{G}\right)$ consisting of a non-empty set $V(G)$ of vertices, a set $E(G)$ of edges, and a mapping $\psi_{G}: E(G) \rightarrow V(G) \times V(G)$, is function define as : $\psi(e)=(x, y)$.

The two vertices x and y are called end vertices of the edge.

Remarks:

1- If $V \times V$ is set of ordered pairs then the graph is called directed graph (digraph) .

2- If $V \times V$ is set of unorder pairs then the graph is called undirected graph.

3- In digraph, the edge e denoted by $\psi(e)=(x, y)$.
4- In undirected graph, the edge e denoted by $\psi(e)=x y$ or $\psi(e)=\{x, y\}$.

5- The digraph denoted by \mathbf{D} or \mathbf{G}.
6- The undirected graph denoted by G .

Definition : The edge $\psi(e)=(x, y)$ or $\psi(e)=x y$ is called loop if $x=y$.

Definition : The two edges $\psi\left(e_{1}\right)=\left(x_{1}, y_{1}\right), \psi\left(e_{2}\right)=\left(x_{2}, y_{2}\right)$ (or $\left.\psi\left(e_{1}\right)=x_{1} y_{1} \psi\left(e_{2}\right)=x_{2} y_{2}\right)$ are called Parallel if $x_{1}=y_{1}$ and $x_{2}=y_{2}$.

Definition : The graph is called simple if contains neither Parallel nor loop .

Example :

$V(G)=\{x, y, z\}=V(D)$ and edge set $E(G)=\left\{e_{1}, e_{2}, e_{3}\right\}=E(D)$.
Where G is undirected graph and D is digraph .
2- The edge is loop , the two edges are parallel.
3- Where not parallel.
4- Let G be a graph where
$V(G)=\left\{x_{1} x_{2} x_{3}: x_{i} \in\{0,1\}, i=1,2,3\right\}$
$E(G)=\left\{\left(x_{1} x_{2} x_{3}, y_{1} y_{2} y_{3}\right): \sum_{i=1}^{3}\left|x_{i}-y_{i}\right|=1\right\}$
Solution : Then $V(G)=\{000,001,010,100,011,101,110,111\}$
$(000,001) \in E(G)$
$|0-0|+|0-1|+|0-1|=1$
$(001,010) \notin E(G)$
$|0-0|+|0-1|+|1-0|=2 \neq 1$

Q3

Remarks :

1. The end vertices of the edge \mathbf{e} is called incident with \mathbf{e}.
2. If there is vertex \boldsymbol{x} in common between two edges e_{1} and e_{2} then the edges e_{1} and e_{2} are called incident with vertex \boldsymbol{x}.

Fig. 1
3. The end vertices of the edge \mathbf{e} is called adjacent.
4. If there is vertex \boldsymbol{x} in common between two edges e_{1} and e_{2} (the edges adjacent). (see Fig.1).

Definition : 1- The order of the graph G is the number of the vertices (write as : $\mathcal{V}=|V(G)|$).

2- The size of the graph G is the number of the edges (write as : $\mathcal{E}=$ $|E(G)|)$.

Remark :

1- $\mathrm{E}(x, y)$ is the set of edges from x to y .
2- $\mu(x, y)=|\mathrm{E}(x, y)|$ (عدد الحافات بين).

Example:

1-

$\mathrm{E}(x, y)=\{1,2\}$
$\mathrm{E}(y, x)=\{3\}$
$\mathrm{E}(x, z)=\{4\}$
$\mathrm{E}(z, x)=\varphi$

Remarks :

1- We can induced from any digraph undirected graph called underlying graph of digraph \mathbf{D} by removing the orientation of the all directed edges.

2- We can obtained two digraphs from undirected graph.

1. Symmetric digraph of the graph G. In this digraph we write any undirected edge $\psi_{G}(e)=x y$ as two directed edges $\psi_{D}(e)=$ (x, y) and $\psi_{D}(e)=(y, x)$.
2. Oriented graph of a graph G in this digraph we write any undirected edge. $\psi_{G}(e)=x y$ as directed edge $\psi_{D}(e)=(x, y)$ or $\psi_{D}(e)=(y, x)$
